Exercise Problem 1

Calculate the effective diffusion coefficient for HCI in water at 25 °C, neglecting i

Calculate the transference number for proton and Cl-ion

Table 6.1-1 Diffusion coefficients of ions in water at 25 °C

Cation	D	Anion	D
H ⁺ Li ⁺ Na ⁺ K ⁺ Rb ⁺ Cs ⁺ Ag ⁺ NH ₄ N(C ₄ H ₉) ₄ Ca ²⁺ Mg ²⁺ La ³⁺	9.31	OH^-	5.28
Li ⁺	1.03	F^-	1.47
Na^+	1.33	$C1^-$	2.03
K^{+}	1.96	Br^-	2.08
Rb^+	2.07	I^-	2.05
Cs^+	2.06	NO_3^-	1.90
Ag^+	1.65	CH_3COO^-	1.09
NH_4^+	1.96	$CH_3CH_2COO^-$	0.95
$N(\vec{C_4}H_9)_4^+$	0.52	$B(C_{6}H_{5})_{4}^{-}$	0.53
Ca^{2+}	0.79	SO_4^{2-}	1.06
Mg^{2+}	0.71	CO_{3}^{2-}	0.92
La ³⁺	0.62	$\begin{array}{c} B(C_6H_5)_4^- \\ SO_4^{2-} \\ CO_3^{2-} \\ Fe(CN)_6^{3-} \end{array}$	0.98

Note: Values at infinite dilution in 10^{-5} cm²/sec. Calculated from data of Robinson and Stokes (1960).

Solution

Calculate the effective diffusion coefficient for HCI in water at 25 °C, neglecting i

$$D_{eff} = \left[\frac{2}{1/D_1 + 1/D_2} \right] = \left[\frac{2*10^{-5}}{1/9.31 + 1/2.03} \right] = 3.33*10^{-5} \text{ cm}^2/\text{s}$$

In absence of current, diffusion is restricted by slower moving ion (CI-)

Calculate the transference number for proton and Cl- ion

$$t_1 = \left[\frac{D_1}{D_1 + D_2}\right] = \left[\frac{9.31}{9.31 + 2.03}\right] = 0.82$$

$$t_2 = \left[\frac{D_2}{D_1 + D_2}\right] = \left[\frac{2.03}{9.31 + 2.03}\right] = 0.18$$

Table 6.1-1 Diffusion coefficients of ions in water at 25 °C

Cation	D	Anion	D
H ⁺ Li ⁺ Na ⁺ K ⁺ Rb ⁺ Cs ⁺ Ag ⁺ NH ₄ N(C ₄ H ₉) ₄ Ca ²⁺ Mg ²⁺ La ³⁺	9.31	OH^-	5.28
Li ⁺	1.03	\mathbf{F}^-	1.47
Na^+	1.33	C1 ⁻	2.03
K^+	1.96	Br^-	2.08
Rb^+	2.07	\mathbf{I}^-	2.05
Cs ⁺	2.06	NO_3^-	1.90
Ag^+	1.65	CH ₃ COO ⁻	1.09
NH_4^+	1.96	$CH_3CH_2COO^-$	0.95
$N(\vec{C_4}H_9)_4^+$	0.52	$B(C_6H_5)_4^-$	0.53
Ca^{2+}	0.79	SO_4^{2-}	1.06
Mg^{2+}	0.71	$\begin{array}{c} B(C_6H_5)_4^- \\ SO_4^{2-} \\ CO_3^{2-} \\ Fe(CN)_6^{3-} \end{array}$	0.92
La ³⁺	0.62	$Fe(CN)^{3-}_{6}$	0.98

Note: Values at infinite dilution in 10^{-5} cm²/sec. Calculated from data of Robinson and Stokes (1960).

The current is mainly carried by H+ (82%)

Exercise problem 2

Calculate the diffusion coefficient for 0.001 M LaCl₃ in water at 25 °C in the absence of a current flow.

Table 6.1-1 Diffusion coefficients of ions in water at 25 °C

Cation	D	Anion	D
$\overline{\mathrm{H}^{+}}$	9.31	OH^-	5.28
Li ⁺	1.03	\mathbf{F}^-	1.47
Na^+	1.33	$C1^-$	2.03
K^+	1.96	Br^-	2.08
Rb^+	2.07	I^-	2.05
Cs^+	2.06	NO_3^-	1.90
Ag^+	1.65	$CH_3^3COO^-$	1.09
NH_4^+	1.96	$CH_3CH_2COO^-$	0.95
$N(\vec{C_4}H_9)_4^+$	0.52	$B(C_6H_5)_4^-$	0.53
Ca^{2+}	0.79	SO_4^{2-}	1.06
Mg^{2+}	0.71	CO_3^{2-}	0.92
H ⁺ Li ⁺ Na ⁺ K ⁺ Rb ⁺ Cs ⁺ Ag ⁺ NH ₄ N(C ₄ H ₉) ₄ Ca ²⁺ Mg ²⁺ La ³⁺	0.62	$\begin{array}{c} B(C_6H_5)_4^- \\ SO_4^{2-} \\ CO_3^{2-} \\ Fe(CN)_6^{3-} \end{array}$	0.98

Note: Values at infinite dilution in 10^{-5} cm²/sec. Calculated from data of Robinson and Stokes (1960).

$$J_T = -\left[\frac{(|z_1| + |z_2|)}{\left(\frac{|z_1|}{D_2} + \frac{|z_2|}{D_1}\right)}\right] \nabla c_T$$

$$J_T = -\left[\frac{(|z_1| + |z_2|)}{\left(\frac{|z_1|}{D_2} + \frac{|z_2|}{D_1}\right)}\right] \nabla c_T \qquad D_{e\!f\!f} = \left[\frac{(|z_1| + |z_2|)}{\left(\frac{|z_1|}{D_2} + \frac{|z_2|}{D_1}\right)}\right] = 1.29 * 10^{-5} \text{ cm}^2/\text{s}$$
 Faster Cl- but +3 charge on La⁺³

Exercise problem 3

Calculate the diffusion coefficient for La⁺³ at 25 °C in absence of current when we also have 1 M NaCl in addition to 0.001 M LaCl₃. Assume negligible interaction of Na⁺ with La⁺.

Table 6.1-1 Diffusion coefficients of ions in water at 25 °C

Cation	D	Anion	D
H ⁺ Li ⁺ Na ⁺ K ⁺ Rb ⁺ Cs ⁺ Ag ⁺ NH ₄ N(C ₄ H ₉) ₄ Ca ²⁺ Mg ²⁺ La ³⁺	9.31	OH ⁻	5.28
Li ⁺	1.03	F^-	1.47
Na ⁺	1.33	$C1^-$	2.03
K^+	1.96	Br^-	2.08
Rb^+	2.07	I^-	2.05
Cs ⁺	2.06	NO_3^-	1.90
Ag^+	1.65	CH ₃ COO ⁻	1.09
NH_4^+	1.96	CH ₃ CH ₂ COO ⁻	0.95
$N(\vec{C_4}H_9)_4^+$	0.52	$B(C_6H_5)_4^-$	0.53
Ca^{2+}	0.79	$SO_4^{2-3/4}$	1.06
Mg^{2+}	0.71	$\begin{array}{ccc} SO_4^{2-} & & & \\ SO_4^{2-} & & & \\ CO_3^{2-} & & & \end{array}$	0.92
La ³⁺	0.62	$Fe(CN)_6^{3-}$	0.98

Note: Values at infinite dilution in 10^{-5} cm²/sec. Calculated from data of Robinson and Stokes (1960).

$$La^{3+}$$
 Cl^{-} $c_1 = 0.001 \text{ M}$ $c_2 = 1 + 3 * 0.001 = 1.003 \text{ M}$

When i = 0

$$J_1 = -\left[\frac{D_1 D_2 (z_1^2 c_1 + z_2^2 c_2)}{(D_1 z_1^2 c_1 + D_2 z_2^2 c_2)}\right] \nabla c_1$$

$$\Rightarrow D_{eff, La^{3+}} = \left[\frac{D_1 D_2 (z_1^2 c_1 + z_2^2 c_2)}{(D_1 z_1^2 c_1 + D_2 z_2^2 c_2)} \right] = \left[\frac{0.62 * 2.03 (9 * 0.001 + 1 * 1.003)}{(0.62 * 9 * 0.001 + 2.03 * 1 * 1.003)} \right] = 0.62 * 10^{-5} \text{ cm}^2/\text{s}$$

The diffusion of the lanthanum chloride in this solution is the same as the solitary lanthanum ion.

